爱爱爱视频网站_霍思燕三级露全乳照_九九热免费在线视频_久久久精品国产_国产男男gay网站_综合久久国产九一剧情麻豆_亚洲成人国产综合_亚洲第一区第二区

期刊 科普 SCI期刊 投稿技巧 學術 出書 購物車

首頁 > 優秀范文 > 傳輸機理論文

傳輸機理論文樣例十一篇

時間:2023-03-23 15:20:06

序論:速發表網結合其深厚的文秘經驗,特別為您篩選了11篇傳輸機理論文范文。如果您需要更多原創資料,歡迎隨時與我們的客服老師聯系,希望您能從中汲取靈感和知識!

傳輸機理論文

篇1

一般的數字采集系統,是通過傳感器將捕捉的現場信號轉換為電信號,經模/數轉換器ADC采樣、量化、編碼后,為成數字信號,存入數據存儲器,或送給微處理器,或通過無線方式將數據發送給接收端進行處理。無線數據傳輸系統就是樣一套利用無線手段,將采集的數據由測量站發送到主控站的設備。

1系統組成

系統組成如圖1、圖2所示。

系統由測量站和主控站兩部分組成。測量站主要完成對現場信號的采集、存儲,接收遙控指令并發送數據。主控站的主要工作是發送遙控指令、接收數據信息、進行數據處理和數據管理、隨機顯示打印等。

2AT89C51與數字電臺的串行通信

Atmel公司的AT89C51單片機,是一種低功耗、高性能的、片內含有4KBFlashROM的8位CMOS單片機,工作電壓范圍為2.7~6V(實際使用+5V供電),8位數據總線。它有一個可編程的全雙工串行通信接口,能同時進行串行發送和執著收。通過RXD引腳(串行數據接收端)和TXD引腳(串行數據發送端)與外界進行通信。

2.1通信協議與波特率

數字電臺與單片機、終端主控機的通信協議為:

通信接口——標準串行RS232接口,9線制半雙工方式;

通信幀格式——1位起始位,8位數據位,1位可編程數據位,1位停止位;

波特率——1200baud。

數字電臺選用Motorola公司的GM系列車載電臺,工作于VHF/UHF頻段,可進行無線數傳(9線制標準串行RS232接口),也可進行話音通信;采用二進制移頻鍵控(2FSK)調制解調方式,符合國際電報電話咨詢委員會CCITT.23標準。在話帶內進行數字傳輸時,推薦在不高于1200b/s數據率時使用。實際使用時,電臺工作于220~240MHz頻率范圍,采用半雙工方式(執行收、發操作,但不能同時進行)即可滿足系統要求。

2.2AT89C51串行口工作方式

AT89C51串行口可設置四種工作方式,可有8位、10位和11位幀格式。本系統中,AT89C51串行口工作于方式3,即鳘幀11位的異步通信格式:1位起始位,8位數據位(低位在前),1位可編程數據位,1位停止位。

發送前,由軟件設置第9位數據(TB8)作奇偶校驗位,將要發送的數據寫入SBUF,啟動發送過程。串行口能自動把TB8取出,裝入到第9位數據的位置,再逐一發送出去。發送完畢,使TI=1。

接收時,置SCON中的REN為1,允許接收。當檢測到RXD(P3.0端有“1”到“0”的跳變(起始位)時,開始接收9位數據,送入移位寄存器(9位)。當滿足RI=0且SM2=0或接收到的9位數據為1時,前8位數據送入SBUF,第9位數據送入SCON中的RB8,置RI為1;否則,這次接收無效,不置位RI。

串口方式3的波特率由定時器T1的溢出率與SMOD值同時決定:

方式3波特率=T1溢出率/n

當SMOD=0時,n=32;SMOD=1時,n=16。T1溢出率取決于T1的計數速率(計數速率=fosc/12)和TI預置的初值。

定時器T1用作波特率發生器,工作于模式2(自動重裝初值)。設TH1和TL1定時計數初值為X,則每過“28-X”個機器周期,T1就會發生一次溢出。初值X確定如下:

X=256-fosc×(SMOD+1)/384×BTL

本系統中,SMOD=0,波行率BTL=1200,晶振fosc=6MHz,所以初值X=F3H。

2.3AT89C51與數字電臺的硬件連接

AT89C51與數字電臺的硬件連接如圖3所示。

系統采用異步串行通信方式傳輸測量數據。利用單片機串口與數字電臺RS232數據口相連。電臺常態為收狀態(PPT=0,收狀態;PPT=1,發狀態),單片機P3.5腳輸出高電平。單片機使用TTL電平,電臺使用RS232電平,由MAX232完成TTL電平與RS232電平之間的轉換。3片光電耦合器6N137實現單片機與電臺之間的電源隔離,增強系統抗干擾性能。

單片機通過帶控制端的三態緩沖門74HC125、非門74HC14控制電臺的收發轉換,以及指令的接收和數據發送。接收時,P3.5=1,c2=1,74HC125B截止;P3.5經74HC14反相、光電隔離,使電臺PPT腳為低電平,將其置為接收狀態;同時c1=0,74HC125A導通,接收的指令由電臺的RXD端輸入,經MAX232電平變換、光電隔離、74HC125A緩沖門,送入單片機RXD腳。發射時,P3.5=0,經74HC14反相、光電隔離,使電臺PPT腳為高電平,將其置為發射狀態;同時c1=1,74HC125A截止,c2=0,74HC125B導通,數據由單片機TXD腳輸出,經74HC125B緩沖門、光電隔離、MAX232電平變換,通過電臺TXD端口將數據發送出去。

3通信軟件設計

通信軟件至關重要,一旦出現問題,整個系統就會癱瘓。采取差錯控制與容錯技術是非常重要的。

*主控站發送的指令中包含一定數量的同步符55H和3字節的密碼。測量站在連續收到5個同步符后進行密碼驗證,驗證通過后正式接收指令字節;如未通過,則測量站發一信號讓主控站重發,三次驗證不過則停發該命令。測量站發/主控站收時,驗證方式與此相同。驗證通過后,測量站開始發送數據。

*一個指令由3字節構成,第二字節等于第一字節加上35H,第3字節等于第二字節加上36H。如果收到的指令不符合此規則,則重發該命令,連續三次錯誤時停發。

*主控站每發一個指令,測量站都回送一個應答信號。該應答信號中包含原指令樣本。

下面給出單片機串行口與電臺的基本通信程序。

初始化程序:

BTLEQU2FH;波特率放在內部RAM的2FH單元

MOVTMOD,#21H;T0方式1,16位計數器,T1方式2,串口用

SETBTR0;啟動T0

MOVBTL,#0F3H;波特率設定為1200

MOVSCON,#0C0H;串口方式3,9位數據,禁止接收

接收及驗證程序:

NUMEQU2BH;同步符個數值存放在內部RAM的2BH單元

TEMPEQU2CH

ROM-CH:DB55H,55H,55H,55H,55H,55H,55H,55H,55H,55H

DB55H,55H,55H,55H,55H,55H,55H,55H,55H,55H;20字節同步符

MIMDB''''WSC'''':3字節密碼“WSC”

SETBP3.5;置電臺收狀態

SETBREN;允許串口接收

A1:MOVNUM,#0;記錄連續到同步符55H的個數

A2:JBRI,A2;串口有數據轉A3

A3:CLRRI;清接收中斷標志

MOVA,SBUF;讀串口數據

CJNEA,#55H,A1;不是同步符轉A1

INCNUM;收到的同步符個數加1

MOVA,NUM;取收到的同步符個數

CJNEA,#5,A2;未收夠連續5個55H轉A2

A4:MOVNUM,#0;密碼驗證,記錄收到密碼字節數

A5:MOVDPTR,#MIM;密碼字符首址

MOVA,NUM

MOVCA,@A+DPTR;查表取密碼

MOVTEMP,A;保存密碼

JBRI,A6;串口收完一個字節轉A6

A6:CLRRI;清接收中斷標志

MOVA,SBUF;讀串口數據

CJNEA,TEMP,A4;與密碼不符轉A4

INCNUM;收到的密碼個數加1

MOVA,NUM;取已收到的密碼字節數

CJNEA,#3,A5;密碼未收完轉A5

發送程序:

CLRP3.5;置電臺發狀態

MOVB,#23

MOVDPTR,#ROM-CH

B1:CLRA

MOVCA,@A+DPTR;查表發送同步符和密碼共24字節

INCDPTR

LCALLSEND-CH;調發送單字節子程序

DJNZB,B1

CLRA

MOVDPTR,#7000H;外部RAM數據首址,發送外部RAM中的數據到電臺

B2:CJNER4,#0,B3

CJNER3,#0,B3;R4R3=發送字節數

B3:MOVXA,@DPTR;取數據

INCDPTR

LCALLSEND-CH

CJNER3,#0,B4

CJNER4,#0,B5

B4:DECR3

LJMPB2

DECR3

DECR4

LJMPB2

SEND-CH:SETBTB8

MOVSBUF,A

DB0,0,0,0,0,0,0,0

JNBTI,$;延時4μs

CLRTI

篇2

在工業、科學研究以及醫療設備中,目前出現了大量需要進行通信的設備,這些設備通信距離較近、數據量較小、不適合布線。比如自動抄表系統、酒店點菜系統以及現場數據采集系統等,其中有很多設備是可移動的,而且要求何種小便于攜帶。因此,要求其通過設備具有體積小、功耗低、成本低、使用方便等特點。基于這些需求,本文給出了一款超低功耗的無線數字傳輸模塊的設備及實現方法。

該模塊采用Chipcon公司的超低功耗FSK調制解調芯片CC1000和Microchip公司的低功耗單片機PIC16F73,從而保證了系統的超低功耗。同時,為了適應電池供電系統的應用,該模塊支持查詢方式的無線通信,可以使系統的平均工作電流低至10μA。該模塊具有8組信道,可以實現點對點、點對多點的半雙工通信,并且提供標準串行數據接口,支持TTL、RS232和RS485通信接口,可以方便地與其它控制器或計算機連接。

圖1

1模塊硬件設計

模塊結構框圖如圖1所示。

作為工作在物理層和數據鏈路層的底層通信設備,該系統完成數據的調制解調、假數據過濾、數據組合、解碼數據幀、數據校驗等功能。在接收過程中完成數據由電信號向位流、由位流數據向字節,由字節向數據幀的變換,而在發送過程中則完成接收到的逆向過程。數據發送過程中數據流的變化如圖2所示。

調制解調由CC1000完成。系統采用頻移鍵控調制(FSK),載波頻率為434MHz,帶寬為64kHz,數據采用差分曼徹斯特編碼發送,空中發送數據速率可以根據需要設置,最高FSK數據速率為76.8kpbs。CC1000采用三線命令接口和兩線數據接口,可編程配置載波頻率和數據速率等內容。有關CC1000的詳細內容見參考文獻。

模塊控制器在發送時從用戶接口接數據和命令,并將用戶數據轉換成數據幀傳送給CC1000,控制CC1000進行數據發送。在接收時,控制器接收從CC1000傳送過來的數據,分析數據,過濾噪聲,將數據由位流轉換為字節,進行校驗并將用戶數據通過串行口傳送給用戶,使用戶可以實現所發即所收。

模塊是為低功耗系統而設計的,除了具有SLP引腳可以直接休眠模塊外,還有一些專門設計的命令來支持使用查詢方式的通信。PCMD、RX、TX三線組成模塊的三線接口,配置命令時PCMD必須為高電平。配置命令工作時序如圖3所示。

發送數據時PCMD應置為低電平,通過串行口發送數據即可。模塊使用時間間隔區分數據幀,如果有傳輸半個字節的時間沒有接收到數據,則認為此前接收到的為一幀數據,系統將編碼該幀數據并通過CC1000進行調制和發送。因此,如果用戶數據是以數據幀的格式發送的,用戶應當連續發送數據,以避免模塊將一幀數據分割為兩幀數據發送,從而降低發送效率。模塊只能進行半雙工通信,沒有數據發送時模塊處于接收狀態;有休眠信號時模塊進入體眠狀態,此時模塊無法接收和發送數據,只有將模塊喚醒后,才能發送和接收數據。READY信號是模塊工作狀態指示信號。當READY長時間處于低電平狀態時,可以使用RST將模塊復位,重新設置模塊的工作狀態,以避免模塊處于錯誤工作狀態。

2軟件設計

系統軟件采用專門為PIC單片機進行了優化,能夠為PIC系列單片機產生優質高效的代碼,具體內容參考文獻。系統控制器軟件設計是本系統的核心內容,由于控制器要完成與用戶和CC1000雙方的通信及數據封裝,因此系統軟件借用Windows系統的消息循環機制設計,采用消息循環的體系結構。這種結構使得程序結構清晰、可擴展性強、可移植性強。經過長時間的初中,證明這種結構非常適合單片機系統軟件的開發。

圖4為程序初始化和主函數部分的結構框圖。系統程序總線結構采用消息驅動機制。在系統內部寄存器和變量初始化完成后便可以進入消息循環程序查詢系統消息。系統消息一般是CPU外部或內部的事件通過CPU中斷系統激勵CPU運行的。為了能夠使系統產生和響應消息,必須啟動CPU的中斷系統,因而在進入消息循環前啟動CPU定時中斷、串行通信中斷、外部觸發中斷。程序初始化部分在CPU上電或復位后只執行一次,CPU在正常工作時即將終都在消息循環中反復檢測消息是否存在,并根據消息的種類做不同的操作,最后清除相應的消息標志,再進行循環檢測消息。本系統中消息共有三種,分別是程序節拍控制信號、與CC1000通信的信號以及與用戶通信的信號。程序節拍控制信號控制程序的運行過程,包括時間信號、外部中斷信號(休眠、喚醒)以及其它定時動作信號;與CC1000通信的信號包括CC1000狀態轉換信號、接收完成信號、發送開始信號以及發送完畢信號等,負責管理與CC1000的通信和控制工作;與用戶通信的信號包括接收用戶數據完畢信號、用戶數據發送完畢信號以及向用戶發送數據開始信號等,負責與用戶的通信管理。程序的消息循環結構如圖5所示。

3模塊性能

3.1模塊功能

作為一款專門為低功耗系統而設計的無線數字傳輸模塊,該模塊具有低電平供電、低功耗的特點。供電電壓范圍為3V~12V。當供電電壓為3V時,在接收狀態下,模塊電流為9.6mA;在發送狀態下,模塊電流為25.6mA;在休眠狀態下,模塊電流為2μA。通信系統使用查詢方式工作時,處于接收的工作電流計算公式如下,即若休眠時間為dsl,檢測信號時間為tdt,那么平均工作電流為(單位為μA

):

Ip=(tsl×2+tdt×9600)/(tsl+tdt)

因此,如果一個系統的休眠時間為8s,檢測時間為13μA。這樣,5400mAh的鋰電流可以使用47年!當然,實際使用中應該計算模塊處于接收狀態時的電流,此時模塊的功耗就取決于模塊工作的情況和傳輸數據量的大小,但是其極低的待機功耗對于移動設備來說是十分重要的。

3.2通信可靠性

通信誤碼率可以使用如下近似公式計算:

Pe≈Ne/N

式中,N為傳輸的二進制碼元總線;Ne為被傳輸錯的碼元數,理論上應有N∞。

在實際使用中,N足夠大時,才能夠把Pe近似為誤碼率。經過對模塊的測試,在數據速率為2400bps、通信距離為100m(平原條件)時,通信誤碼率為10-3~10-5。在數據速率提高時,通信誤碼率會增加,但是通信模塊可采用多項技術來提高通信可靠性。在物理層,模塊采用差分曼徹斯特編碼技術發送數據,從而保證通信中的同步問題;而在數據鏈路層,使用CRC(循環冗余編碼)進行數據幀校驗,用以保證數據到達用戶應用層以后的可靠性。當然,用戶在應用層還可以采取多種通信協議來進一步提高通信的可靠性。

3.3通信距離

在無線通信中,通信距離與發射機發送信號的強度和接收機接收靈敏度有著直接關系。本模塊的發送功率為10dBm,而在數據速率為2400bps、帶寬為64kHz、通信二進制誤碼率為10-3條件下,模塊的接收靈敏度為-110dBm。在天線高于地面3m的可視條件下,可告通信距離(誤碼率小于10-3)大于300m。在市區環境中,可靠通信距離在10m左右。

圖5

4模塊應用

篇3

隨著傳感器技術、信息處理技術、測量技術與計算機技術的發展,智能駕駛系統(輔助駕駛系統一無人駕駛系統)也得了飛速的發展。消費者越來越注重駕駛的安全性與舒適性,這就要求傳感器能識別在同一車道上前方行駛的汽車,并能在有障礙時提醒駕駛員或者自動改變汽車狀態,以避免事故訴發生。國際上各大汽車公司也都致力于這方面的研究,并開發了一系列安全駕駛系統,如碰撞報警系統(CW)、偏向報警系統(LDW)和智能巡游系統(ICC)等。國內在這些方面也有一定的研究,但與國外相比仍存在較大的差距。本文將主要討論多傳感器信息融合技術在智能駕駛系統(ITS)中的應用。

1ICC/CW和LDW系統中存在的問題

1.1ICC/CW系統中的誤識別問題

ICC/CW系統中經常使用單一波束傳感器。這類傳感器利用非常狹窄的波束寬度測定前方的車輛,對于彎曲道路(見圖1(a)),前后車輛很容易駛出傳感器的測量范圍,這將引起智能巡游系統誤加速。如果前方車輛減速或在拐彎處另一輛汽車駛入本車道,碰撞報警系統將不能在安全停車范圍內給出響應而容易產生碰撞。類似地,當彎曲度延伸時(見圖1(b)),雷達系統易把鄰近道路的車輛或路邊的防護欄誤認為是障礙而給出報警。當道路不平坦時,雷達傳感器前方的道路是斜向上,小丘或小堆也可能被誤認為是障礙,這些都降低了系統的穩定性。現在有一些濾波算法可以處理這些問題并取得了一定效果,但不能徹底解決。

1.2LDW系統中存在的場景識別問題

LDW系統中同樣存在公共駕駛區場景識別問題。LDW系統依賴于一側的攝像機(經常僅能測道路上相鄰車輛的位置),很難區分彎曲的道路和做到多樣的個人駕駛模式。LDW系統利用一個前向攝像機探測車輛前方道路的地理狀況,這對于遠距離測量存在著精確性的問題,所有這些都影響了TLC(Time-to-Line-Crossing)測量的準確性。現常用死區識別和駕駛信息修訂法進行處理,但并不能給出任何先驗知識去識別故障。

2多傳感器信息融合技術在ITS系統中的應用

針對以上系統存在的一些問題,研究者們紛紛引入了多傳感器信息融合技術,并提出了不同的融合算法。基于視覺系統的傳感器可以提供大量的場景信息,其它傳感器(如雷達或激光等)可以測定距離、范圍等信息,對兩方面的信息融合處理后能夠給出更可靠的識別信息。融合技術可以采用Beaurais等人于1999年提出的CLARK算法(CombinedLikelihoodAddingRadar)和InstitudeNeuroinformatik提出的ICDA(IntegrativeCouplingofDifferentAlgorithms)算法等方法實現。

2.1傳感器的選擇

識別障礙的首要問題是傳感器的選擇,下面對幾種傳感器的優缺點進行說明(見表1)。探測障礙的最簡單的方法是使用超聲波傳感器,它是利用向目標發射超聲波脈沖,計算其往返時間來判定距離的。該方法被廣泛應用于移動機器人的研究上。其優點是價格便宜,易于使用,且在10m以內能給出精確的測量。不過在ITS系統中除了上文提出的場景限制外,還有以下問題。首先因其只能在10m以內有效使用,所以并不適合ITS系統。另外超聲波傳感器的工作原理基于聲,即使可以使之測達100m遠,但其更新頻率為2Hz,而且還有可能在傳輸中受到其它信號的干擾,所以在CW/ICC系統中使用是不實際的。

表1傳感器性能比較

傳感器類型優點缺點

超聲波

視覺

激光雷達

MMW雷達價格合理,夜間不受影響。

易于多目標測量和分類,分辨率好。

價格相合理,夜間不受影響

不受燈光、天氣影響。測量范圍小,對天氣變化敏感。

不能直接測量距離,算法復雜,處理速度慢。

對水、灰塵、燈光敏感。

價格貴

視覺傳感器在CW系統中使用得非常廣泛。其優點是尺寸小,價格合理,在一定的寬度和視覺域內可以測量定多個目標,并且可以利用測量的圖像根據外形和大小對目標進行分類。但是算法復雜,處理速度慢。

雷達傳感器在軍事和航空領域已經使用了幾十年。主要優點是可以魯棒地探測到障礙而不受天氣或燈光條件限制。近十年來隨著尺寸及價格的降低,在汽車行業開始被使用。但是仍存在性價比的問題。

為了克服這些問題,利用信息融合技術提出了一些新的方法,利用這些方式可以得到較單一傳感器更為可靠的探測。

2.2信息融合的基本原理

所謂信息融合就是將來自多個傳感器或多源的信息進行綜合處理,從而得出更為準確、可靠的結論。多傳感器信息融合是人類和其它生物系統中普遍存在的一種基本功能,人類本地地具有將身體上的各種功能器官(眼、耳、鼻、四肢)所探測的信息(景物、聲音、氣味和觸覺)與先驗知識進行綜合的能力,以便對其周圍的環境和正在發生的事件做出估計。由于人類的感官具有不同度量特征,因而可測出不同空間范圍的各種物理現象,這一過程是復雜的,也是自適應的。它將各種信息(圖像、聲音、氣味和物理形狀或描述)轉化成對環境的有價值的解釋。

多傳感器信息融合實際上是人對人腦綜合處理復雜問題的一種功能模擬。在多傳感器系統中,各種傳感器提供的信息可能具有不同的特片:對變的或者非時變的,實時的或者非實時的,模糊的或者確定的,精確的或者不完整的,相互支持的或者互補的。多傳感器信息融合就像人腦綜合處理信息的過程一樣,它充分利用多個傳感器資源,通過對各種傳感器及其觀測信息的合理支配與使用,將各種傳感器在空間和時間上的互補與冗余信息依據某種優化準則結合起來,產生對觀測環境的一致性解釋或描述。信息融合的目標是基于各種傳感器分離觀測信息,通過對信息的優化組合導出更多的有效信息。這是最佳協同作用的效果,它的最終目的是利用多個傳感器共同或聯合操作的優勢來提高整個系統的有效性。

2.3常用信息融合算法

信息融合技術涉及到方面的理論和技術,如信息處理、估計理論、不確定性理論、模式識別、最優化技術、神經網絡和人工智能等。由不同的應用要求形成的各種方法都是融合方法的個子集。表2歸納了一些常用的信息融合方法。

表2信息融合方法

經典方法現代方法

估計方法統計方法信息論方法人工智能方法

加權平均法經典推理法聚類分析模糊邏輯

極大似然估計貝葉斯估計模板法產生式規則

最小二乘法品質因素法熵理論神經網絡

卡爾曼濾波D-S證據決策理論遺傳算法

模糊積分理論

2.4智能駕駛系統中信息融合算法的基本結構

由于單一傳感器的局限性,現在ITS系統中多使用一組傳感器探測不同視點的信息,再對這些信息進行融合處理,以完成初始目標探測識別。在智能駕駛系統中識別障礙常用的算法結構如圖2所示。

3CLARK算法

CLARK算法是用于精確測量障礙位置和道路狀況的方法,它同時使用來自距離傳感器(雷達)和攝像機的信息。CLARK算法主要由以下兩部分組成:①使用多傳器融合技術對障礙進行魯棒探測;②在LOIS(LikelihoodofImageShape)道路探測算法中綜合考慮上述信息,以提高遠距離道路和障礙的識別性能。

3.1用雷達探測障礙

目前經常使用一個雷達傳感器探測前方的車輛或障礙。如前面所分析,雷達雖然在直路上的性能良好,但當道路彎曲時,探測的信號將完全可靠,有時還會有探測的盲點或產生錯誤報警。為了防止錯誤報警,常對雷達的輸出進行標準卡爾曼(Kalman)濾波,但這并不能有效解決探測盲點問題。為了更可靠地解決這類問題,可以使用掃描雷達或多波束雷達,但其價格昂貴。這里選用低價的視覺傳感器作為附加信息,視覺傳感器經常能提供掃描雷達和多波束雷達所不能提供的信息。

3.2在目標識別中融合視覺信息

CLARK算法使用視覺圖像的對比度和顏色信息探測目標,使用矩形模板方法識別目標。這個模板由具有不同左右邊界和底部尺寸的矩形構成,再與視覺圖像對比度域匹配,選擇與雷達傳感器輸出最接近的障礙模板。

CLARK算法首先對雷達信號進行卡爾曼濾波,用于剔除傳感器輸出的強干擾,這出下列狀態和觀測方程處理:

D(t)=R(t)+v(t)

式中,R(t)為前方障礙的真實距離(未知),R(t)是其速度(未知,)D(t)為距離觀測值,Δt為兩次觀測的問題時間,w(t)和v(t)為高斯噪聲。給定D(t),由Kalman濾波器估計R(t)和R(t)的值,并把估計值R(t)作為距離輸入值,使用R(t)和D(t)的差值確定所用矩形模板的偏差。由于使用雷達探測的位置與雷達作為補償。

使用上述算法可以有效提高雷達探測的可靠性,但當圖像包含很強的邊緣信息或障礙只占據相平面一個很小的區域時,仍不能得到滿意的結果。因此,除對比度外,又引入視覺圖像的顏色域。

3.3相合似然法

在探測到障礙后,CLARK算法將這些信息整合到道路探測算法(LOIS)中。LOIS利用變形道路的邊緣應為圖像中對比度的最大值部分且其方位應垂直于道路邊緣來搜索道路。如果只是簡單地將兩個信息整合,則障礙探測部分的像素被隱藏,其圖像梯度值不會影響LOIS的似然性。這樣可以防止LOIS將汽車前方障礙的邊緣誤認為是道路的邊緣來處理。但是當道路的真實邊緣非常接近障礙的邊緣時,隱藏技術則失效。

為了使隱藏技術有效,可以在障礙和道路探測之間采取折中的處理方法。這種折中的處理方法就是相合似然法。它將探測障礙固定的位置和尺寸參數變為可以在小范圍內變化的參數。新的似然函數由LOIS的似然和小探測障礙的似然融合而成。它使用七維參數探測方法(三維用于障礙,四維用于道路),能同時給出障礙和道路預測的最好結果。其公式如下:

式中,Tb、Tl、Tw為相平面內矩形模板的底部位置、左邊界和寬度的三個變形參數,[xr(t),xc(t)]為變形模板相平面的中心。[yr(t),yc(t)]為由雷達探測并經Kalman濾波的障礙在相平觀的位置。將地平面壓縮變化為相平面,的實時估計,為相平面內一個路寬的值(3.2m)。tan-1的壓縮比率在相平面內不小于Tmin(路寬的一半),不太于Tmax(路寬)。通過求解七維后驗pdfP(k'''',b''''LEFT,b''''RIGHT,vp,Tb,Tl,Tw|[yr(t),yc(t)],ObservedImage)的最大值獲得障礙和道路目標。

篇4

PCI總線規范是為提高微機總線的數據傳輸速度而制定的一種局部總線標準。在設計自行開發的基于PCI總線的數據傳輸設備時,需要開發相應的設備驅動程序。通常開發PCI設備驅動程序有多種模式,在Windows2000環境下,主要采用WDM模式。本文針對自行開發的基于PCI總線的CCD視頻信號傳輸控制卡,編寫了符合WDM模式的驅動程序。

1WDM模式驅動程序

1.1WDM模式(WindowsDriverModel)

Windows2000對驅動程序的編寫不再基于以往的Win3.x和Win9x下的VxD(虛擬設備驅動程序)結構,而是基于一種新的驅動模型——WDM(WindowsDriverModel)。

WDM為Windows98/2000/XP操作系統的設備驅動程序的設計提供了統一的框架。WDM來源于WindowsNT的分層32位設備驅動程序模型(layered32-bitdevicedrivermodel)。它支持更多的特性,如即插即用(PnP)、電源管理、WMI和NT事件。

1.2設備驅動程序

設備驅動程序是操作系統的一個組成部分,它由I/O管理器(I/OManager)管理和調動。Windows2000操作系統下的I/O管理器功能描述如圖1所示。

I/O管理器每收到一個來自用戶應用程序的請求就創建一個I/O請求包(IRP)的數據結構,并將其作為參數傳遞給驅動程序。驅動程序通過識別IRP中的物理設備對象(PDO)來區別是發送給哪一個設備。IRP結構中存放請求的類型、用戶緩沖區的首地址、用戶請求數據的長度等信息。驅動程序處理完這個請求后,在該結構中填入處理結果的有關信息,調用IoCompleteRequest將其返回給I/O管理器,用戶應用程序的請求隨即返回。訪問硬件時,驅動程序通過調用硬件抽象層的函數實現。

1.3DriverStudio工具簡介

NuMegaLab公司開發的DriverStudio是一整套開發、調試和檢測Windows平臺下設備驅動程序的工具軟件包。它把DDK(DeviceDevelopmentKit)封裝成完整的C++函數庫,根據具體硬件通過向導生成框架代碼,并且提供了一套完整的調試和性能測試工具SoftICE、DriverMonitor等。

2應用實例

本文利用PCI專用接口芯片PCI9052設計了一個數據傳輸控制卡。卡上主要的芯片有PCI9052、FIFO(CY7C4221)、CPLD(MAX7064S)和A/D轉換器(MAX1197)。傳輸卡硬件框圖如圖2所示。面陣CCD得到的視頻信號經過調理電路,生成的視頻調理信號通過A/D轉換器進行數字化處理,送入FIFO中。在CPLD的控制下,數據經過PCI9052送入PCI總線,再傳送到計算機內存中,并顯示在監視器上。驅動程序必須實現如下幾個基本功能:(1)硬件中斷;(2)能支持應用程序獲取數據;(3)能根據外部FIFO(CY7C4221)的狀態啟動或停止突發傳輸。

在數據輸入過程中,最重要的是對數據進行實時控制,因此需要硬件中斷。在中斷程序中,根據外部FIFO狀態完成數據的讀入。

2.1用DriverWizard生成驅動程序框架

DriverStudio中的DriverWorks軟件為開發WDM程序提供了一個完整的框架。它包含一個可快速生成WDM驅動程序框架的代碼生成向導工具DriverWizard,而且還帶有許多類庫。在用DriverWizard生成的程序框架中寫入相對于設備的特定代碼,編譯后即可得到所需的驅動程序。

在利用DriverWorksV2.7的向導DriverWizard完成驅動程序的框架時共有11個步驟,其中關鍵步驟有:

(1)在第四步中選中PCI,并在VendorID和DeviceID中分別輸入廠商號和設備號,還需填入PCISubsystemID和PCIRevisionID。這四項可以用網上的免費軟件PCITree或PCIView瀏覽PCI設備,用這兩個軟件也可以得到BAR0~BAR5的資源分配情況和中斷號。

(2)第七步IRP隊列排隊方法,它決定了驅動程序檢查設備的方式。本設計選SystemManaged,則所有的IRP排隊都由系統(即I/O管理器)完成。

(3)第九步是最關鍵的一步。首先在Resources中添加資源,在name中輸入變量名,在PCIBaseAddress中輸入0~5的序列號。0~5和BAR0~BAR5一一對應。在設置中斷對話框中,在name欄寫入中斷服務程序的名稱,選中創建中斷服務程序ISR?穴CreateISR?雪,不選創建延遲程序調用DPC(CreateDPC),選中MakeISR/DPCclassfunctions,使ISR/DPC成為設備類的成員函數。

其次選中Buffer以選取讀寫方式,用于描述與I/O操作相關的數據緩沖區。本設計需要快速傳送大量數據,因此采用DirectI/O方式。

(4)在第十步中,需要加入與應用程序或者其他驅動程序通信的I/O控制代碼參量。

2.2驅動程序模塊框圖和代碼分布

PCI設備驅動程序模塊包括配置空間的訪問模塊、IO端口模塊、內存讀寫模塊和終端模塊等。各模塊之間是對等的。驅動程序模塊框圖如圖3所示。

驅動程序初始化模塊代碼段放在#pragmacode_seg(″INT″)和#pragmacode_seg()之間。在系統初始化完成后,這部分代碼從內存中釋放,防止占用系統寶貴的內存資源。#pragmacode_seg()之后是驅動程序和系統的許多模塊的實現部分。這部分在驅動程序運行后不會從內存中釋放。

2.3驅動程序主要模塊的實現

(1)配置空間的訪問模塊

DriverWorks的KPciConfiguration類封裝了訪問PCI設備配置空間的所有操作。首先初始化這個類的實例:

KpciConfigurationPciConfig()m_Lower.TopOfStack());

/?觹m_Lower是KpnpLowerDevice類的對象。m_LowerTopOfStack()返回當前設備堆棧頂部的設備對象。*/

初始化完后可以直接利用成員函數ReadHeader/WriteHeader函數訪問所有的配置寄存器。

為了確定映射空間的類型和大小,先向目標基地址寄存器寫入0Xffffffffh,然后回讀該寄存器的值。如果最低位為1,表示映射于I/O空間,反之為存儲空間;如果映射于存儲空間,從第四位開始計算0的個數可以確定內存空間的大小;如果是I/O方式,從第二位開始計算0的個數可確定I/O空間的大小,最大為256字節。如果設備的存儲空間超過256字節,要實現設備的整個存儲部分的訪問,就必須采用內存映射。

(2)I/O操作模塊

Driverworks的KIoRange類封裝了I/O端口訪問的操作。部分代碼如下:

{……

KIORangeDevIoPort();//創建實例

NTSTATUSstatus=DevIoPort().Initialize(pResListTranslated,pResListRaW,PciConfig.BaseAddressIndexToOrdinal(0));

/*第一個參數為轉換后的資源列表指針;第二個參數為原始資源列表指針;第三個參數中的0為I/O口對應的基地址,用來轉換成特定端口資源的序數?*/

If(NT_SUCCESS(status))

{……

DevIoPort.inb(0,LineBuf1,10);

/*成功初始化后可分別用KIoRange類的成員函數inb(/outb)從端口中讀/寫字節*/

}

else{Invalidate();returnstatus;

/*未能初始化成功,錯誤信息在status中*/

{

……}

(3)內存讀寫模塊

DriverWorks的KMemoryRange類封裝了端口訪問的操作。

status=m_MemoryRange().Initialize(pResListTranslated,pResListRaw,PciConfig.BaseAddressIndexToOrdinal(0));

此函數的參數、意義及具體用法與I/O端口的操作基本相同。

內存對象也用來發送控制字,以控制CPLD的開始和停止等。實際上控制字是通過PCI9052發送的。該控制字地址已被映射成PCI的內存空間。所以定義一個指向內存空間的內存對象,通過該對象即可發送控制字。

(4)中斷模塊

在中斷模塊,首先要激活PCI9052中斷使能位,然后判斷硬件中斷響應是否產生,如果有,則進行突發傳輸,讀入FIFO中的數據。

BOOLEANTranCard::Isr_MyIrq(void)

{if(//中斷未產生)

{……

returnFALSE;}

else

{/*如果產生硬件中斷,設置命令寄存器,進行突發數據傳輸*/

returnTRUE;}

}

為了將硬件中斷與編寫的中斷服務程序連接在一起,采用InitializeAndConnect方法,部分代碼如下:

NTSTATUSTranCardDevice?押?押OnStartDevice(KIrpI)

{……

status=m_MyIrq.InitializeAndConnect(

pResListTranlated,

LinkTo(Isr_MyIrq),

This;)

……}

2.4驅動程序的調用

編寫驅動程序本身不是最終目的,最終目的是調用驅動程序管理資源,并為用戶應用程序使用。驅動程序加載以后,它的許多進程處于Idle狀態,實際上需要用戶應用程序去調用激活。應用程序利用Win32API直接調用驅動程序,實現驅動程序和應用程序的信息交互。

首先用CreateFile()打開設備,獲得一個指向設備對象的句柄。使用CreateFile函數時應注意:由于驅動程序是*.sys,所以第一個參數應該是這個設備對象的標志連接(symboliclink)。該標志連接名有一個設置數據文件搜索路徑的數字號,而這個數字號通常是零。如果這個連接名是″TranCard″,則傳遞給CreateFile的宇符串就是:″\\\\.\\TranCard0″。例如:

HANDLEhDevice=CreateFile(″\\\\.\\TranCard0″)GENERIC_READ|GENERIC_WRITE,FILE_SHARE_READ,NULL?,OPEN_EXISTING,0,NULL);

然后用DeviceIoControl()進行數據的傳送。最后用CloseHandle()關閉設備句柄。

下面是應用DeviceIoControl()程序片段。

{……

m_b=DeviceIoControl(hDevice,TRANCARD_IOCTL_

RECEIVE(buffer,sizeof,buffer,NULL,0,&buffersize,NULL);

……}

2.5驅動程序的調試

篇5

通信網正向著IP化、寬帶化方向發展。通信網由傳輸網、交換網和接入網三部分組成。目前,我國傳輸網已經基本實現數字化和光纖化;交換網也實現了程控化和數字化;而接入網仍然是通過雙絞線與局端相連,只能達到56kb/s的傳輸速率,不能滿足人們對多媒體信息的迫切需求。對接入網進行大規模改造,以升級到FTTC(光纖到路邊)甚至FTTH(光纖到戶),需要高昂的成本,短期內難以實現。XDSL技術實現了電話線上數據的高速傳輸,但是大多數家庭電話線路不多,限制了可連接上網的電腦數,而且在各房間鋪設傳輸電纜極為不便。最為經濟有效而且方便的基礎設備就是電源線,把電源線作為傳輸介質,在家庭內部不必進行新的線路施工,成本低。電力線作為通信信道,幾乎不需要維護或維護量極小,而且可以靈活地實現即插即用。此外,由于不必交電話費,月租費便宜。

電力線高速數據傳輸使電力線做為通信媒介已成為可能。鋪設有電力線的地方,通過電力線路傳輸各種互聯網的數據,就可以實現數據通信,連成局域網或接入互聯網。通過電源線路傳輸各種互聯網數據,可以大大推進互聯網的普及。此項技術還可以使家用電腦及電器結合為可以互相溝通的網絡,形成新型的智能化家電網,用戶在任何地方通過Internet實現家用電器的監控和管理;可以直接實現電力抄表及電網自動化中遙信、遙測、遙控、遙調的各項功能,而不必另外鋪設通信信道。因此,研究電力

線通信是十分必要的。

1OFDM基本原理

正交頻分復用OFDM(OrthogonalFrequencyDivisionMultiplexing)是一種正交多載波調制MCM方式。在傳統的數字通信系統中,符號序列調制在一個載波上進行串行傳輸,每個符號的頻率可以占有信道的全部可用帶寬。OFDM是一種并行數據傳輸系統,采用頻率上等間隔的N個子載波構成。它們分別調制一路獨立的數據信息,調制之后N個子載波的信號相加同時發送。因此,每個符號的頻譜只占用信道全部帶寬的一部分。在OFDM系統中,通過選擇載波間隔,使這些子載波在整個符號周期上保持頻譜的正交特性,各子載波上的信號在頻譜上互相重疊,而接收端利用載波之間的正交特性,可以無失真地恢復發送信息,從而提高系統的頻譜利用率。圖1給出了正交頻分復用OFDM的基本原理。考慮一個周期內傳送的符號序列(do,d1,…,dn-1)每個符號di是經過基帶調制后復信號di=ai+jbi,串行符號序列的間隔為t=l/fs,其中fs是系統的符號傳輸速率。串并轉換之后,它們分別調制N個子載波(fo,f1,…,fn-1),這N個子載波頻分復用整個信道帶寬,相鄰子載波之間的頻率間隔為1/T,符號周期T從t增加到Nt。合成的傳輸信號D(t)可以用其低通復包絡D(t)表示。

其中ωi=-2π·f·i,f=1/T=1/Nt。在符號周期[O,T]內,傳輸的信號為D(t)=Re{D(t)exp(j2πfot)},0≤t≤T。

若以符號傳輸速率fs為采樣速率對D(t)進行采樣,在一個周期之內,共有N個采樣值。令t=mt,采樣序列D(m)可以用符號序列(do,d1,…,dn-1)的離散付氏逆變換表示。即

因此,OFDM系統的調制和解調過程等效于離散付氏逆變換和離散付氏變換處理。其核心技術是離散付氏變換,若采用數字信號處理(DSP)技術和FFT快速算法,無需束狀濾波器組,實現比較簡單。

2電力線數傳設備硬件構成

電力線數據傳輸設備的硬件框圖如圖2所示。

2.1數字信號處理單元TMS320VC5402

用數字信號處理的手段實現MODEM需要極高的運算能力和極高的運算速度,在高速DSP出現之前,數字信號處理只能采用普通的微處理器。由于速度的限制,所實現的MODEM最高速度一般在2400b/s。自20世紀70年代末,Intel公司推出第一代DSP芯片Intel2920以來,近20年來涌現出一大批高速DSP芯片,從而使話帶高速DSPMCODEM的實現成為可能。

TMS320系列性價比高,國內現有開發手段齊全,自TI公司20世紀80年代初第一代產品TMS32010問世以來,正以每2年更新一代的速度,相繼推出TMS32020、TMS320C25、TMS320C30、TMS320C40以及第五代產品TMS320C54X。

根據OFDM調制解調器實現所需要的信號處理能力,本文選擇以TMS320VC5402作為數據泵完成FFT等各種算法,充分利用其軟件、硬件資源,實現具有高性價比的OFDM高速電力線數傳設備。

TMS320C54X是TI公司針對通信應用推出的中高檔16位定點DSP系列器件。該系列器件功能強大、靈活,較之前幾代DSP,具有以下突出優點:

速度更快(40~100MIPS);

指令集更為豐富;

更多的尋址方式選擇;

2個40位的累加器;

硬件堆棧指針;

支持塊重復和環型緩沖區管理。

2.2高頻信號處理單元

主要實現對高頻信號的放大、高頻開關和線路濾波等功能,并最終經小型加工結合設備送往配電線路。信號的放大包括發送方向的可控增益放大(前向功率控制),接收方向AGC的低噪聲放大部分。其中高頻開關完成收發高頻信號的轉換,實現雙工通信。同時使收發共用一個線路濾波器,這樣可以節省系統成本。2.3RS一232接口單元

用戶數據接口采用RS一232標準串行口。串口的數據中斷采用邊沿觸發中斷,串口中斷程序完成用戶數據的發送與接收。將接收到的用戶數據暫存到CPU的發送緩沖區中,等到滿一個突發包時就發送到DSP進行處理。

3參數設計

3.1保護時間的選擇

根據OFDM信號設計準則,首先選擇適當的保護時間,=20μs,這能夠充分滿足在電力系統環境下,OFDM信號消除多徑時延擴展的目的。

3.2符號周期的選擇

T>200μs,相應子信道間隔,f<5kHz,這樣在25kHz帶寬內至少要劃分出5個子信道。另外子信道數不能太多,增加子信道數雖然可以提高頻譜傳輸效率,但是DSP器件的復雜度也將增加,成本上升,同時還將受到信道時間選擇性衰落的嚴重影響。因此,考慮在25kHz的帶寬內采用7個子信道。

3.3子信道數的計算

子信道間隔:

各子信道的符號周期:T=250μs

考慮保護時間:=20μs,則有Ts=T+=270μs

各子信道實際的符號率:

總的比特率:3.71kbps×25子信道×2b/symbol=185.5kb/s

系統的頻譜效率:β=185.5kbps/100kHz=1.855bps/Hz<2bps/Hz

可以看出,這時系統已經具有較高的頻譜效率。25路話音信號總的速率與經串并變換和4PSK映射后的各子信道上有用信息的符號率相比,每個子信道還可以插入冗余信息用于同步、載波參數、幀保護和用戶信息等。需要指出的是:

①由于OFDM信號時頻正交性的限制條件,在此設計中盡管采用了25個子載波并行傳輸也只能傳25路語音。如果要傳8路語音,經串并轉換和16QAM映射后,各個子信道上有用信息的符號率為1.855bps/Hz,最多還可以插入的冗余信息為O.145bps/Hz,在實際傳輸中這是很難保證的傳輸質量的,因此該設計相對于M-16QAM采用4個子載波傳輸6路話音并不矛盾。

②在此設計中,為冗余信息預留了較多的位,其冗余信息與有用信息的比值為0.59,大于iDEN系統的0.44。這是考慮到OFDM信號對于載波相位偏差和定時偏差都較為敏感,這樣就可以插入較多的參考信號以快速實現載波相位的鎖定、跟蹤及位同步;另一方面對引導符號間隔的選擇也較為靈活,在設計中選擇引導符號間隔L=10。

③OFDM信號調制解調的核心是DFT/IDFT算法。目前,普遍采用DSP芯片完成DFT/IDFT,因此有必要對設計所需的DSP性能進行估計。根據設計要求,至少要能在250μs內完成32個復數點的FFT運算。我們知道,N個復數點的FFT共需要2Nlog2N次實數乘法和3Nl0g2N次實數加法。假設實數乘法和實數加法都是單周期指令,以32個復數點為例,這樣共需要800個指令周期,即20μs,因此采用TMS320VC5402能夠滿足設計要求(TMS320VC5402的單指令周期為10ns)。

4.1調制部分的軟件設計

此程序作為子程序被調用之前,要發送的數據已經被裝入數據存儲器,并將數據區的首地址及長度作為入口參數傳遞給子程序。程序執行時,首先清發送存儲器,然后配置AD9708的采樣速率,之后允許串行口發送中斷產生,使中斷服務程序自動依次讀取發送存儲器中的內容,送入AD9708變換成模擬信號。之后程序從數據存儲器讀取一幀數據,經編碼,并行放入IFFT工作區的相應位置,插入導頻符號并將不用的點補零。隨后進行IFFT,IFFT算法采用常用的時域抽點算法DIT,蝶形運算所需的WN可查N=512字的定點三角函數表得到。由于TMS320VC5402的數值計算為16位字長定點運算方式,所以IFFT采用成組定點法,既提高了運算精度又保證了運算速度。然后對IFFT變換后的結果擴展加窗,并將本幀信號的前擴展部分同上幀信號的后擴展部分相加,加窗所需窗函數可查表得到。窗函數存放在窗函數表中,是事先利用C語言浮點運算并將結果轉換為定點數存放在表中的。

經實測,從讀取串行數據到加窗工作完成最多占用75個抽樣周期(75×125μs)的時間,而發送一幀信號需512+32=544個抽樣周期(544×125μs)。這說明C5402的運算速度足夠滿足需要。

當上一幀信號發送完畢,程序立即將以處理好的本幀信號送入發送存儲器繼續發送,并通過入口參數判斷數據是否發送完畢。

4.2解調部分的軟件設計

用TMS320VC5402實現的流程分同步捕捉及解調兩個階段。同步捕捉階段執行時,首先清接收存儲器,配置AD9057的采樣速率,然后開串行口接收中斷,使接收中斷服務程序接收來自AD9057的采樣數據并依次自動存入接收存儲器。

每得到一個新的樣點,程序先用DFT的遞推算法解調出25路導頻符號,并對導頻均衡。之后分別同參考導頻符號矢量600h+j600h進行點積,這里用導頻符號矢量的實部與虛部的和代替點積,即可反映相關函數的規律,以簡化運算。求得25路導頻與參考導頻的相關值后暫時保存,并分別與前一個樣點所保存的各導頻相關值比較(相減),用一個字節保存比較結果的正負號(每路導頻占1bit)。在處理前一個樣點的過程中,也用一個字節保存它同其前一樣點的導頻相關值比較的正負號。對這兩個字節進行簡單的邏輯運算,即可判斷出各導頻是否在前一個樣點處出現峰值。倘若25路導頻中有20個以上的導頻同時出現峰值,則認為該樣點以前的N=512個樣點即為捕捉到的一幀信號,程序進入解調階段;否則等待接收新的采樣點繼續進行同步捕捉。

解調階段首先對捕捉到的幀信號進行實信號的FFT變換,仍然采用成組定點法,之后進行均衡。然后利用導頻算出本地抽樣時鐘的延遲τ,在計算中應盡量避免出現除法,可將常數分母取倒數后提前算出,作為乘法的系數。為了保證其后二維AGC的精度,計算中τ精確到O.1μs。接下來根據τ調整抽樣時鐘,程序將調整量通知串行口發送中斷服務程序后,繼續執行二維AGC,而由中斷服務程序在每次中斷響應時間命令,每次可以調整下一采樣時刻提前(或落后)1μs。

二維AGC分兩步進行。首先根據τ對均衡后的調制矢量進行相位校正,這里需要利用FFT變換所使用的512字的三角函數表,用一個指針指向三角函數表的表頭,根據τ及三角函數表角度間隔算出多少路子信道才需要將指針下移一格,通過這種查表的方法可以簡潔地確定各子信道的校正量。經相位校正后,即可利用導頻進行幅度校正。

篇6

SystemView的操作圖符庫包含功能強大、易于使用圖形模板設計模擬和數字以及離散和連續時間系統的環境.如FIR濾波器設計(包括:低通、帶通、高通、帶阻、Hilbert和微分)、IIR濾波器設計(包括:多極Bessel,Butterworth,Cheby-shev和Linear Phase)和FFT類型:magnitude,squared、光譜分析器、能量譜密度和相位.

1.2 信號分析、處理功能

SystemView分析窗口是能夠提供系統波形的交互式分析窗口、動態探針、實時顯示的可視環境.它還提供完成系統仿真、數據生成并處理操作的接收端計算器.另外,SystemView允許用戶如同系統內建的庫一樣使用自己用C/C++編寫插入的用戶代碼庫;能自動執行系統連接檢查,并顯示出錯的圖符等特點,便利于用戶系統的診斷.

2實驗過程的流程及基于SystemView的電路原理模塊的設計流程

實驗過程流程如圖1所示,在教學過程中,結合具體的教學內容,借助于SystemView仿真平臺,根據原理、規律,應用軟件提供的模塊,設計電路,并確定電路中的各模塊器件參量,運用仿真平臺提供的虛擬儀器進行在線動態測量[8-14],這樣以人機交互的方式,可使每位學生親自動手接觸電路,連接元件,依據電路設計要求更改相應元件參量,從而達到培養學生的設計、創造能力.SystemView電路模塊設計流程如圖2所示,可按照理論要求,方便地調整和修改模塊器件參量,分析各器件參量對系統產生的影響與作用.這樣將連線、測試、修改、分析、仿真結果的觀察相統一,與理論描述相對照比較,把實驗與理論有機相結合,加深了學生對理論的認識及理解,提高學生邏輯思維能力.

3電路設計與仿真實踐

以“數字基帶傳輸系統[15]”為例進行電路設計及實時仿真.3.1電路模型分析數字信號基帶傳輸系統主要由脈沖形成器、發送濾波器、傳輸信道、接收濾波器和識別等功能電路組成[2,10].3.2模型搭建及仿真

啟動SystemView仿真平臺[14],進入設計窗口.設計創建實驗電路過程如下:1)模塊選取在SystemView原理圖編輯窗口中,從左邊的圖符庫中選擇需要的圖符,將各圖符模塊選取到設計窗口中.2)實驗電路圖符的連接將每個圖符依據數字基帶傳輸系統電路原理模型,在設計窗口中連接起來形成如圖3所示仿真電路.系統仿真電路中各圖符塊的參量設置如表1所示.

3)電路文件的保存電路創建完成后將該電路保存為“TEST”,以便進行調用、測試.設置SystemView系統視窗并仿真:設置“時間窗”參量:Start Time 0s;Stop Time 0.5s;Sample Rate 10 000Hz.運行系統之后,進入“分析窗”,進行觀察、分析.

4仿真結果及分析

眼圖是利用實驗手段方便地估計系統性能時在示波器上觀察到的一種圖形,衡量基帶傳輸系統性能的重要方法,借助于它可以達到有效地改善系統性能.通過SystemView分析窗“繪制新圖”功能,在“System Sink Calculator”對話框中的Style和Time Slice按鈕,設置好“Start Time(sec)”和“Repeat Length(sec)”欄內參量,獲得數字基帶傳輸系統的眼圖.如圖4所示,在低通濾波器為巴特沃茲濾波器(Fc=60Hz)條件下,當信道中噪聲方差(Std Dev)為0.1V時,接收濾波器的輸出波形眼圖與噪聲方差為0.3V的眼圖分別如圖4(a)和(b),可以觀察到,“眼睛”張開情況;改變低通濾波器的帶寬,如巴特沃茲濾波器(Fc=30Hz)條件下,當信道中噪聲方差(Std Dev)為0.1V時,接收濾波器的輸出波形眼圖與噪聲方差為0.3V的眼圖分別如圖5(a)和(b),直觀地觀察出“眼睛”的情況;當信道中噪聲方差(StdDev)為0.1V,巴特沃茲濾波器的信道帶寬不同時,抽樣判決比較后輸出的信號眼圖如圖6(a)和(b)所示.接收端通過抽樣判決來重現基帶信號,當噪聲過大、低通濾波器的帶寬較窄時,抽樣判決就會產生錯誤,產生誤碼.通過以上眼圖的觀察研究,明顯地得出:噪聲大小對眼圖的影響,噪聲越小,線條越細,越清晰,“眼睛”張開越大,誤碼率越小.同時觀察到信道帶寬對眼圖的影響情況,眼皮厚度反映了加入噪聲的幅度和信道帶寬,信道中加入的噪聲干擾越大及信道越窄,眼圖越模糊,越雜亂等這些較抽象的物理現象及使學生深刻理解高斯濾波器、抽樣比較電路的物理功能.

篇7

一、引言

多元智能理論在世界教育教學改革中產生了廣泛的積極影響,學習和研究這一理論,對于推進我國高等教育改革具有重要的理論和現實意義。

中華傳統文化主要包括:古文、詩、詞、曲、賦、民族音樂、民族戲劇、曲藝、國畫、書法等;傳統節日(均按農歷)有:正月初一春節(農歷新年)、正月十五元宵節、四月五日清明節、清明節前后的寒食節、五月五日端午節、七月七日七夕節、八月十五中秋節、臘月三十除夕以及各種民俗等;包括傳統歷法在內的中國古代自然科學以及生活在中的各地區、各少數民族的傳統文化也是中華傳統文化的組成部分。中華傳統文化是民族之魂,是中華民族對人類的偉大貢獻,是我們先輩傳承下來的豐厚遺產,是歷史的結晶[1]。對于我們來說弘揚和發展中華傳統文化責無旁貸,毋庸置疑。

那么探索全新的傳統文化教育之路刻不容緩。迎面襲來的多元智能理論與信息技術潮流帶來更多可拓展的空間。在信息技術日新月異的今天,合理利用信息技術、學生的多元智能,來提高大學生對傳統文化的認識、理解及重視程度大勢所趨。最終培養當代大學生成為時代的主人,中華傳統文化傳承的有生力量當務之急。深入思考、探索,最終走出一條具有特色的傳統文化教育之路迫在眉睫。

二、弘揚傳統文化的意義

剛剛勝利閉幕的十八屆三中全會給了傳統文化明確的定義:“一個國家的歷史、形象和尊嚴的代言是這個國家的傳統文化。”

中國文化的根蒂是濃厚的中華民族傳統文化。增強國家文化軟實力也必須以領悟、尊重中國傳統文化為基本條件。近年來國家大力度進行的深化文化體制改革中,一直把弘揚中國傳統文化作為著力點,從而完善中華優秀傳統文化教育。

三、當前傳統文化教育的現狀

與國家的大力號召相反傳統文化在傳承中卻受到了“冷遇”,在教育中遭遇了“瓶頸”。全面分析當今大學生的傳統文化教育我們不難發現以下問題:

(一)忽略傳統文化教育

1.家庭傳統文化教育缺失、斷層

目前我國的家庭教育中家長對傳統文化的理解偏差,家長的傳統文化教育意識淡薄,子女受其影響而表現出來的消極和抵觸情緒,以及其他各方面的因素導致了當前我國傳統文化的傳承不力,甚至在很多方面都出現了缺失和斷層。

2.學校傳統文化教育系統建設不完善

2012年,某教育機構對全國100家高校的傳統文化教育課程設置進行統計,僅有30家高校開設了傳統文化教育選修課程,其中配備對口專業教師的僅有20%。就學生學習情況來看,課程出席率小于35%。

(二)學校對傳統文化教育過度的課程化,任務化,教育推廣面狹窄單一。

灌輸式教育,填鴨式教學,不利于學生對傳統文化的真正理解。使傳統文化的傳承成為僅僅是對傳統文化知識的介紹。

(三)中國的傳統文化教育缺乏情景式教育

中國的傳統文化教育具有適應性,產生于特定的生產生活環境,同時也反作用于生活環境,與環境共融形成一種“共生”關系。當前的傳統文化教育使其脫離了賴以生存的環境,成為無本之木,無根之水,空中樓閣,成為了書本的文化,“僵死”的文化。

四、多元智能理論與計算機網絡支持下對傳統文化教育的探索

在計算機網絡高速發展的今天,大多數新興事物、外來文化迅速占領市場,成為現代生活不可或缺的部分。人們除了關注這些“異”物對中國傳統文化的沖擊面前,我們不能只是愛么能助,望洋興嘆,更應該看到的是他們帶來的活力與生機。那么利用多元智能理論結合信息技術實施多元多維、情景性、發展性的教育模式,正適合傳統文化的教育。

近年來,隨著互連網走入千家萬戶,我們進入了“全城一家零距離,珠穆朗瑪在身邊”開放、虛擬的網絡時代。那么,讓新一代的信息技術與傳統文化之間碰撞出絢麗的火花,是下一步應該探索的問題。

(一)利用網絡虛擬現實技術為傳統文化安個“家”。

在信息技術的支持下虛擬仿真出全世界的旅游勝地,使人們足不出戶就能領略世界的風采,是經濟旅游的新潮流。那么基于網絡虛擬現實技術顯著的技術特點為中國傳統文化安個“家”,是初步探索的方向。

(二)傳統文化教育利用多元智能原理與游戲化學習的“臉對臉”。

讓網絡游戲為傳統文化的學習和傳承提供更加有效的方法和途徑,同時讓傳統文化為網絡游戲填加豐富的內涵。網絡游戲的虛擬環境成為傳統文化教育賴以生存的土地。

網絡游戲是網絡虛擬現實技術中的一種,隨著虛擬現實技術的日益成熟,傳統的網絡游戲也成了新興產業。正引發越來越多的社會問題――青少年沉迷網絡游戲的事件層出不窮。網絡游戲設計的暴力,不規范占絕大部分因素。從網絡游戲設計中入手改善網絡游戲的不足,并在網絡游戲設計中將中華民族優秀的傳統文化融入現代網絡游戲之中,賦予傳統文化騰飛的羽翼,同時也賜予網絡游戲以圣潔的靈魂,實現游戲化學習。

根據眾學者的研究,筆者認為,游戲化學習的難點主要在于游戲與學習之間相互融合的問題,游戲與學習之間的比重問題。

五、小結

根據游戲化學習的意義我們用情理的精神,利用傳統的文化改造虛擬游戲的不足,填補虛擬游戲的漏洞。

利用多元智能理論使學生能無意識的在網絡游戲中領悟、學習傳統文化的意義,相反傳統文化也在游戲中起到引導的作用,抑制其弊端,避免沉迷的現象。有機的將傳統文化,網絡環境,學生的意識結合到一起。三維一體的立體式隱性學習模式。

改變“填鴨式”教學,使學習成為一場有趣的游戲,從學習中感受快樂,使人們不再是對游戲成“癮”,而是對學習成“癮”。

篇8

Italian Conference Sensors

and Microsystems

2008, 563pp.

Hardcover

ISBN 9789812833587

G Di Francia等著

本書為第12屆意大利傳感器與微系統會議論文集。這次會議由意大利傳感器與微系統協會于2007年2月12-14日在Napoli城鎮舉行。本書收錄了本次會議上的近80篇論文,為傳感器與微系統及其相關技術領域的發展提供了一個獨特的視角。

傳感器與微系統是一門多學科交叉的綜合性學科,它涉及材料科學、化學、應用物理、電子工程、生物技術等許多領域。本書將收錄的79篇論文依據其所屬的不同領域共分為9個部分:1.生物傳感器,包含用于血糖生物傳感器的敏感元件的制備與特性等10篇文章;2.生理參數監測,包含了對一種用于糖尿病人呼吸標志物檢測的氧化銦傳感器的研究等4篇文章;3.氣體傳感器,包含用多孔硅推動硅技術的極限:一種CMOS氣體敏感芯片、用基于碳納米管的納米復合層涂覆的薄膜體聲波諧振器制成的蒸汽傳感器、飲水機中水和酒精蒸發速率的檢測等15篇文章;4.液相傳感器,包括用于水和空氣環境化學檢測的基于二氧化錫顆粒層的光纖傳感器等4篇文章;5.化學傳感器陣列和網絡,包含了一個用于易揮發性有機化合物分析的多通道的石英晶體微天平、一種用于酒質量分析的新型便攜式微系統的發展等9篇文章;6.微制造與微系統,包括通過實驗研究濕多孔硅的拉曼散射現象、多孔硅上高流速滲透膜在氫過濾裝置中的應用等13篇文章;7.光學傳感器與微系統,包括金屬包層的漏波導化學和生化傳感應用、結構光纖布拉格柵傳感器:前景與挑戰等14篇文章;8.物理傳感器,包括通過多像素的光子計數快速閃爍讀出等6篇文章;9.系統和電子接口,包括能夠估計并聯電容值的非校準的高動態范圍電阻傳感器前端等4篇文章。

本書介紹了傳感器與微系統在意大利的發展狀況與趨勢,對于從事傳感器與微系統方面的研究人員及工程師們,它是一本十分有價值的參考讀物。

孫方敏,

博士生

篇9

這個突破性的研究揭示了篩器蜘蛛(Uloborus Walckenaerius)的捕捉絲的方向集水效應,提出了“多協同效應”機制,為新型仿生集水材料研究提供思想理論基礎。

篇10

 

1、引言

高級別的質量檢測需要在高質量的環境中進行。溫度和濕度是環境的重要參數,對溫濕度的監測是實現優質環境的重要手段。為了避免人為干擾環境和提高效率,遠程監測是一種有效的方法。目前的遠程監測系統大多采用以太網絡、無線數據傳輸模塊或zigbee無線網絡傳輸數據[ 1-6]。但是,以太網是有線傳輸,需布線,受地理環境影響較大;無線數據傳輸模塊的傳輸誤碼率高,可靠性差;zigbee是專用協議無線網絡,成本高,開發難,而且覆蓋范圍有限。本文提出一種基于GSM的溫濕度遠程監測系統,具有傳輸誤碼率低、成本低及覆蓋范圍廣等優點,并且可與監測人員的手機綁定,實現隨時、隨地,移動監測。

2、傳感器的數學模型

2.1 半導體溫度傳感器原理

根據PN結理論,在一定的電流模式下,PN結的正向電壓與溫度具有很好的線性關系。對于理想二極管,只要正向電壓VF大于幾個KT/q,其正向電流IF與正向電壓VF和溫度T之間的關系可表示為

(1)

式中IS 為二極管反向飽和電流, K 為波爾茲曼常數(1.38×10-23J/K),T 為絕對溫度(K), q為電子電荷(1.602×10-19庫侖),

整理后,得

(2)

如前所述,晶體管的基極一發射極電壓在其集電極電流恒定條件下,可以認為與溫度呈線性關系[7]。

2.2 阻抗型高分子濕度傳感器原理

阻抗型高分子濕度傳感器的感濕原理如下:高分子濕敏膜吸濕后,在水分子作用下,離子相互作用減弱,遷移速度增加;同時吸附的水分子使解離的離子增多,膜電阻隨濕度增加而降低,由電阻變化可測知環境濕度。阻抗型高分子濕度傳感器復阻抗與空氣相對濕度、材料配方和電極結構都有關系: 與我有關系

(3)

其中m為叉指對數,b為單個叉指長度,n為電化學反應電子轉移數,f為法拉第常數,c*為氧化劑濃度,D為擴散系數[8]。

但由于傳感器的材料配方、電極結構等方面的不同,導致各種不同的阻抗型高分子濕度傳感器的特性曲線有較大差別,不能用統一的曲線來概括。

3、遠程監測系統

本系統采用先進的GSM無線通信技術、配合以嵌入式解決方案和數據采集等先進技術,構建了一種基于GSM的溫濕度遠程監測系統。

3.1 系統組成及功能

系統分為監測中心站和遠程監測終端兩個部分:監測中心站主要有PC主機、GSM通信模塊TC35i組成(或用戶手機);遠程監測終端主要是由LPC2148ARM內核控制器、GSM通信模塊TC35i、信號調理電路、人機接口和通信接口電路組成。監測中心站通過GSM網絡與監測終端進行無線遠程通信,實現了基于GSM的遠程監測。系統結構圖如圖1所示。

圖1 遠程監控系統框圖

系統實現的功能主要包括數據采集、數據傳送、報警、實時控制和數據處理。遠程監測終端主要負責采集溫度、濕度、2項數據,根據監測中心的命令進行實時上傳數據。中心對收到的采集數據進行處理,報警,實現實時監控。

3.2 溫度檢測電路

本系統采用AD公司生產的單片半導體集成模擬型溫度傳感器AD590。它具有線性度高、精度高、體積小、響應快、價格低等優點,測溫范圍為-55~+150℃。具有良好的互換性,非線性誤差為±0.3℃。此外,AD590的抗干擾能力強,信號的傳輸距離可達100 m以上[9]。

流過器件AD590的電流(μA)等于器件所處環境的熱力學溫度(開爾文)度數:

(4)

式中,—流過器件(AD590)的電流,單位K

AD590的靈敏度為1μA/K,0℃時輸出273μA電流,每上升1℃輸出電流增加1μA ,每下降1℃輸出電流減小1μA。AD590基本測溫電路如圖2所示。

圖2 溫度檢測電路

3.3 濕度監測電路

系統采用CHR-01型阻抗型高分子濕度傳感器,其復阻抗與空氣相對濕度成指數關系。其基本特性為:工作電壓1V AC(50Hz ~ 2 K Hz),檢測范圍20%~ 90% RH,檢測精度±5%,工作溫度范圍0℃~+85℃,特征阻抗范圍21 ~ 40.5KΩ。濕度傳感器阻抗變化與溫度有關,其關系見規格書中濕度阻抗特性數據表,通常先檢測溫度,然后按阻抗查表獲得濕度值。由于直流電壓可使水分子電離,加速老化,所以采用交流電壓測試其阻抗[10]。

將CHR-01與555構成多諧振蕩器,通過檢測頻率,進而獲得阻抗。濕度檢測電路如圖3所示。

圖3 濕度檢測電路

低電平表達式:

高電平表達式:

輸出頻率表達式:

(5)

利用單片機的定時器/計數器進行頻率測量,假設計時時間為T(s),此期間計數值為N,則被測頻率f=N/T

則CHR-01的阻抗為

(6)

其中R1與C的選擇很關鍵,電容C要選擇高精度電容,一是保證其充放電的能力,二是為了其電容值精確,更方便計算濕敏電阻的返回值。

3.4 GSM模塊

本系統采用西門子公司工業級GSM模塊TC35i進行遠程數據傳輸。TC35i支持中英文短消息,自帶異步串行通信接口,方便與PC機和單片機接口,可傳輸語音和數據信號,通過AT命令可實現雙向傳輸指令和數據,波特率可達300b/s。它支持Text和PDU格式的SMS(Short MessageService,短消息),電源范圍為直流3.3~4.8V,電流消耗為空閑狀態為25mA,發射狀態平均為300mA。

3.5 微控制器LPC2148

現場監測站采用了PHILIPS公司基于ARM7 TDMI-S 內核的微控制器LPC2148作為主控制器,完成現場監測站的全局控制。論文參考網。LPC2148內嵌32KB 的片內靜態RAM 和512 KB 的片內Flash 存儲器,片內集ADC、DAC 轉換器,實時時鐘RTC,2 UART ,及USB2.0等多種接口。具有JTAG調試接口、方便在線調試,而且應用電路相對簡單,開發和生產的成本低。芯片可以實現最高60 MHz 的工作頻率,能夠滿足嵌入式系統μC/OS-II 及人性化的人機界面的要求。大容量的內存,方便了收發短消息時的數據緩沖。

4、系統的軟件設計

系統采用GSM無線通信模塊TC35i實現遠程數據通信,TC35i通過AT命令來進行控制,采用短消息方式進行數據傳輸。系統軟件包括現場監測站軟件和監測中心站軟件兩部分。現場監測站軟件主要完成短消息收發、PDU數據協議分析、A/D轉換、串口通信及人機接口的功能,其中重點是短消息收發和PDU數據協議分析,這是解決現場監測站與監測中心站之間遠程無線通信的關鍵。論文參考網。監測中心站的短消息收發及PDU數據協議分析與現場監測站軟件流程基本相同,不再贅述。

4.1 發送短消息

發送短消息的過程:首先將短消息中心號碼、對方號碼、短消息內容編碼成PDU格式;然后計算出短消息的長度,發送AT+CMGS=〈lenghth〉〈CR〉,〈CR〉代表回車即ASCⅡ碼0x0D。等待TC35i模塊返回ASCⅡ字符“〉”,則可以將PDU數據輸入,PDU數據以〈Z〉作為結束符。短消息發送結束后模塊返回〈CRLF〉OK〈CRLF〉。發送短消息流程圖如圖4所示。

圖4 發送短消息流程圖

4.2 接收短消息

接收短消息使用定時器進行周期性串口查詢的方式。短消息到達后,計算機可以接收到指令〈CRLF〉+CMTI:“SM”,INDEX(短消息存儲位置)〈CRLF〉。讀取PDU數據的AT命令為AT+CMGR=INDEX〈CRLF〉,執行此命令后模塊返回剛剛收到的PDU格式的短消息內容。收到PDU格式的短消息后,將這個短消息進行解碼,解碼出短消息發送方的手機號碼、短消息發送時間、發送的短消息內容。接收短消息流程圖如圖5所示。論文參考網。

圖5 接收短消息流程圖

6、結論

為了實現質檢所需的優質環境,本文研究一種基于GSM的溫濕度遠程監測系統。設計了以LPC2148為核心的現場監測終端系統,實現溫濕度的采集,短消息收發及人機接口等功能,并通過GSM模塊TC35i與監測中心站通信,接受指令并實時上傳信息,實現了監測中心對現場溫濕度的遠程監測。實驗表明,本系統傳輸誤碼率低,通信可靠,具有很好市場前景,也為高效率遠程監測系統的實現提供了一種新方法。

參考文獻:

[1] 王天杰,原明亭,基于C8051F020的以太網遠程監控系統的設計.化工自動化及儀表, 2007, 34 (5) : 36~39

[2] 朱正偉,王昌明,基于以太網的遠程電網測控系統的設計與實現[J]. 高電壓技術,2005,31(2):70-72.

[3] 孫靜,王再英. 基于以太網遠程溫度監控系統的設計[J].微計算機信息,2008,24(9)

丁彥闖,韋佳宏,劉廣哲. 基于nRF2401 的分布式測溫系統設計. 電子測量技術,2008,31(12):107~109

孫玉坤,王博,黃永紅. 基于PTR2000 的無線生物發酵監控系統. 儀表技術與傳感器,2007(7):32~34

[4] 劉卉. 基于無線傳感器網絡的農田土壤溫濕度監測系統的設計與開發. 吉林大學學報,2008,38(3):604~608

[5] 張軍國. 基于ZigBee無線傳感器網絡的森林火災監測系統的研究. 北京林業大學學報,2007,29(4):41~45

[6] 高文華. 基于ZigBee的溫濕度監測系統. 電子測量技術,2008,31(10):122~124

[7] 張越. 高壓開關溫度在線監測技術的研究. 燕山大學碩士論文,2001.

[8] 劉若望.高分子電阻型薄膜濕度傳感器——元件構造、老化機理、感濕機理探討. 浙江大學碩士論文,2002

[9] 美國AD公司編寫AD590技術手冊

[10] 西博臣公司編寫CHR-01型阻抗型高分子濕度傳感器技術手冊

篇11

海洋占地球表面積的70%,擁有廣闊的空間和豐富的礦產與生物資源,在人類的活動中占有越來越重要的地位。而在對海洋進行的每一項軍事與民用開發活動中,都離不開通信與數據傳輸作為保障。由于海水是電的導體,在混濁、含鹽的海水中,光波與電磁波的衰減都很大,傳播距離十分有限。只有頻率在30hz~300hz 的超低頻電磁波才能夠在海水中遠距離傳播[1],這樣的頻率范圍要求巨大的天線和發射功率,且只能實現從空氣到水下的單工通信。相比之下,聲波在水中的傳播特性就好得多。利用深海聲道效應,甚至遠在五千公里以外,人們也能清晰地接收到由幾磅tnt炸藥爆炸所輻射的聲信號[2]。迄今為止,聲波是在海水介質中進行遠距離無線通信唯一有效的信息載體。

在水聲數字通信系統中,由于聲波傳播的多途效應造成的碼間干擾是獲得高速數據傳輸的主要障礙,有效的解決方法是在接收機中使用均衡器。采用傳統的自適應均衡技術抑制多途效應的影響,需要周期地發送訓練序列,降低了水聲信道的帶寬利用率。而盲均衡技術不需要訓練序列,可有效地提高信息的傳輸速率[3],因此,研究相應的盲均衡算法在水聲信道中的性能是非常必要的。

時變衰落信道水聲信道的多途效應和多普勒效應都很嚴重,在某些情況下,接收端和發射端之間的漂移以及傳輸介質的改變,都會引起嚴重的相位起伏,相位在0°~360°之間隨機分布,給相干接收帶來很大的困難,必須進行信道均衡和相位跟蹤,否則無法進行正確的解碼。因此相干水聲通信中的載波同步與恢復對數據解調至關重要。過去人們研究一個衰落信道的均衡問題時,都是以信號載波已經得到恢復為前提的,而且接收機的載波恢復和信道均衡分開進行,然而這種做法對時變性很強的水聲信道來說是不合適的[4]。

傳統的cma算法性能穩定且容易實現,但由于cma的代價函數中只利用了信號的幅度信息,而沒有相位信息,因此對相位而言是“盲”的[5],難以完成載波恢復。為了克服相位誤差引起的性能下降,均衡后必須使用載波跟蹤環路來恢復載波相位。

綜上所述,載波恢復盲均衡算法的研究對提高水聲通信質量是非常必要和有實際意義的。

二、研究現狀

最初解決這類問題的方案是由均衡器和一個單獨的載波跟蹤環組成[4],如一階鎖相環(pll)。盲均衡算法與載波相位無關,因此能夠在載波恢復環路鎖定之前進行快速的初步收斂,使信號星座較為正常,有利于進行載波恢復和相位信號檢測[12]。

后來,由falconer提出將載波恢復系統和自適應均衡器的參數調整相聯合,使二者的功能相互補充,從而提高相干水聲通信系統的性能[6]。隨后又陸續提出了一些常數模與載波恢復聯合的算法[8-10],如文獻[8]中提出的修正的常數模算法(mcma)、文獻[11]中提出的改進的載波恢復cma算法、他和amin提出的利用信號星座圖匹配誤差的算法[7]等。

文獻[13]根據16qam信號星座圖的特點,通過對修正的常數模算法(mcma)的性能進行分析,在cma代價函數的基礎上進行修改,得到了一種具有相位糾正能力的誤差函數。使用該誤差函數進行冷啟動,算法收斂能力較強,收斂速度與cma接近。進一步地,當判決錯誤率達到足夠低的水平時,再切換到判決導引算法模式,并采用判決域的方式進行切換,降低了算法的穩態誤差。

文獻[14]提出了一種用于qpsk信號的快速載波恢復常數模盲均衡算法fcrcma(fastcarrierrecoveryconstantmodulusalgorithm)。首先根據qpsk信號的特點和“歸一化lms算法”的思想,提出了一種能夠快速收斂的誤差函數,用所構造的新的誤差函數代替mcma算法的誤差函數,得到了一種新的載波恢復盲均衡算法。

文獻[15]利用極性算法能將乘法運算變為比較運算,將多位運算變為一位運算的特點,將極性算法引入到一種基于統計特性均衡準則的線性均衡器與判決引導均衡器中,并與鎖相環(phase-locked loop,pll)技術相結合,提出一種基于聯合極性迭代的載波相位恢復盲均衡算法。 該算法利用極性算法來減小計算量, 利用判決引導算法來減小均方誤差, 利用鎖相環技術來克服多徑衰落信道引起的載波相位旋轉,兼具了線性均衡器、判決引導算法、極性算法及鎖相環的優良性能。

三、研究內容

(1)研究水聲信道的物理特性,如傳播損失、多徑擴展和多普勒擴展等以及水聲信道的數學模型。

(2)研究抗多徑盲均衡理論的置零準則和最小均方誤差準則,分析兩種準則下均衡器的性能。

(3)研究載波相位恢復盲均衡的原理。

(4)對經典的載波恢復算法進行分析研究和性能對比。

(5)針對所研究的載波恢復算法的性能缺陷進行分析,并提出相應的性能改進(降低均方誤差、降低誤碼率、加快收斂速度或降低運算量等)方法。

四、研究方案與路線

(1)研究幾種深海信道和淺海信道模型,分析每種信道的多途特征,確定相應的抗碼間干擾的方法。進一步地,分析信道引起的相位旋轉問題。

(2)研究修正的常數模算法mcma、正方形等高線算法sca、多模算法mma等代價函數,從理論上說明其完成載波相位恢復的機理。

(3)研究載波恢復盲均衡算法代價函數的凹性,了解算法是否收斂到局部最小值、能否收斂到全局最優等。

(4)分析基于小波變換的盲均衡、基于支持向量機的盲均衡等方法的特點。

(5)在前面分析研究的基礎上,分析以上各載波恢復盲均衡算法的性能,找出其不足并提出相應的改進算法。

(6)通過計算機仿真檢驗所有算法的性能。

五、主要參考文獻

[1] m stojanovic.underwater acoustic communications[c]. oceans'95 conference proceedings, 1995:435-440.

[2] 劉伯勝,雷家煜.碩士論文水聲學原理[m].哈爾濱:哈爾濱工程大學出版社,2002.

[3] m stojanovic.recent advances in high-speed underwater acoustic communications [j].ieee journal of oceanic engineering (s0364- 9059),1996,,21(2):125-136.

[4] tsai k d ,yuan j t. a modified constant modulus algorithm(cma) for joint blind equalization and carrier recovery in two-dimensional digital communication systems. signal processing and its applications,proceedings. seventh international symposium on,volume 2,july 1-4;2003:563–566

[6] kocic m,brady d ,stojanovic m. sparse equalization for real-time digital underwater acoustic communications. oceans '95 conference proceedings,vol. 3:1417-1422

[5] mathis h.nonlinear functions for blind separation and equalization.ph.d.dissertation. swiss federal institute of technology,001

[7] he l,amin m.a dual mode technique for improved blind equalization for qam signals.ieee signal processing letters, 2003;10(2):29-31

[8] godard d n.self-recovering equalization and carrier tracking in two-dimensional data communication systems. ieee transactions on communications,1980;28(11):1867-1875

[9] oh k n, chin y o. modified constant modulus algorithm:blind equalization and carrier phase recovery algorithm. ieee international conference on 'gateway to globalization', seattle,1995;vol.1:498-502

[10] lin j c ,lee l s. a modified blind equalization technique based on a constant modulus algorithm.ieee international conference on conference record, 1998; vol.1:344-348

[11] lin j c. 51lunwen.com/shuoshikait/ blind equalization technique based on an improved constant modulus adaptive algorithm.proc.iee, 2002;149(1):45-50

[12] johnson c r jr, schniter p, endres j t,et al.blind equalization using the constant modulus criterion:a review. proceedings of the ieee, 1998;86(10):1927-1949

[13] yecai guo.blind equalization algorithm suitable for 16qam signals for carrier recovery of underwater acoustic channel,2008

[14] yanping zhang.a fast blind equalization algorithm for carrier recovery of underwater acoustic channel,2004

[15] yecai guo. mixed sign iteration based blind equalization algorithm

for carrier phase recovery of qam signals

二、論文工作實施計劃

(一) 論文的理論、硬件要求、應達到的程度和結果

水聲信道的物理特性,如傳播損失、多徑擴展和多普勒擴展等以及水聲信道的數學模型。抗多徑盲均衡理論的置零準則和最小均方誤差準則,載波相位恢復盲均衡的原理。對經典的載波恢復算法進行分析研究和性能對比。針對所研究的載波恢復算法的性能缺陷進行分析,并提出相應的性能改進(降低均方誤差、降低誤碼率、加快收斂速度或降低運算量等)方法,通過計算機仿真檢驗所有算法的性能。在學術期刊發表學術論文。

(二)論文工作的具體進度與安排

起訖日期 工作內容和要求 備注

2010.4-7 翻閱資料,了解水聲通信的原理及特點

2010.7-10 翻閱資料,了解載波相位恢復和盲均衡的原理和特點。

2010.11-12 翻閱論文,完成開題報告。

2011.1-3研究幾種深海信道和淺海信道模型,分析每種信道的多途特征,確定相應的抗碼間干擾的方法。進一步地,分析信道引起的相位旋轉問題。

2011.4-6 研究修正的常數模算法mcma、正方形等高線算法sca、多模算法mma等代價函數,了解其完成載波相位恢復的機理。

国产一级精品视频| 99国精产品一二二线| 99精品欧美一区二区蜜桃免费| 国产精品美女午夜爽爽| 二区视频在线| 好吊视频一二三区| 污软件在线观看| 一区二区三区入口| 奇米888一区二区三区| 久久久久久亚洲精品中文字幕 | 牛夜精品久久久久久久| 99伊人久久| 欧美美女操人视频| 欧美日韩在线三级| 国产精品久久久久精k8| 日韩电影在线一区二区三区| 99精品在免费线中文字幕网站一区| 国产精品久久久久白浆| 久久国产精品1区2区3区网页| 国产精品第6页| 国产一区二区三区精品在线| 国产精品久久久久9999小说| 色吧亚洲视频| 成人黄色短视频在线观看| 久久影视电视剧免费网站| 日韩丝袜美女视频| 欧美日韩国产在线看| 国产亚洲欧美日韩在线一区| 精东粉嫩av免费一区二区三区| 欧美精品一卡| 神马香蕉久久| 成人性生交大片免费看中文视频| 新版的欧美在线视频| 九九九伊在人线综合| 成年人黄色电影| 九色蝌蚪自拍| 久久国产精品久久久久久小说| www.蜜臀av| 亚洲天堂自拍偷拍| 天天综合网久久综合网| 欧美日韩在线观看成人| 国产又粗又长又硬| 麻豆av免费观看| 成人免费看aa片| 亚洲激情 欧美| 亚洲av综合色区无码另类小说| 欧美自拍小视频| 国产精品欧美激情在线观看| 六月婷婷激情综合| 日本人妻伦在线中文字幕| 黄黄视频在线观看| 一区二区三视频| 亚洲激情一区二区| 色噜噜狠狠色综合网| 清纯唯美一区二区三区| 欧美一级日本a级v片| 欧美日韩高清在线一区| 欧美主播一区二区三区美女 久久精品人| 国产精品青青草| 久久久久久久久四区三区| 国产精品国色综合久久| 狼狼综合久久久久综合网| 日韩电影免费观看在| 亚洲一二三区在线| 成人国产一区二区三区| 草草视频在线免费观看| 一女被多男玩喷潮视频| 亚洲欧美另类动漫| 视频区 图片区 小说区| 日本少妇毛茸茸| 性生交大片免费全黄| 久久精品欧美一区二区| 国产精品尤物视频| 亚洲免费视频网| 欧美色xxx| aaawww| 2019一级黄色毛片免费看网| 国产女主播在线| 国产九九在线| www.综合网.com| 精品视频一区二区三区在线观看| 国产伦乱精品| 国内精品美女在线观看 | 久久精品二区亚洲w码| 国产 日韩 欧美大片| 国产精品免费av| 91精品办公室少妇高潮对白| 欧美精品一区二区高清在线观看| 最近免费中文字幕视频2019| 51久久精品夜色国产麻豆| 亚洲999一在线观看www| 日韩在线电影一区| 北条麻妃在线一区| a级大片在线观看| 欧美福利视频一区二区| 精品人妻一区二区三区麻豆91| 天堂在线国产| 国产精品久久久久永久免费看| h视频在线观看免费| 欧美日韩五码| 精品日韩在线| 国产综合色在线| 亚洲欧美日韩精品久久久久| 欧美一区二区三区在| 九九热最新视频//这里只有精品| 亚洲在线观看视频| 国产手机免费视频| 无码人妻精品一区二区中文| 日韩精品一区二区亚洲av观看| 一区免费观看| 高清中文字幕在线| 丁香花在线高清完整版视频| 欧亚精品一区| 久久99国内精品| 亚洲国产一区二区三区青草影视| 日韩av在线免费| 成人午夜高潮视频| 人人妻人人添人人爽欧美一区| 日韩人妻一区二区三区| 中文字幕 欧美激情| 污污视频在线免费观看| av二区在线| 亚洲成a人片77777在线播放 | 国产污在线观看| 日韩欧美在线观看免费| 91av福利| caoporn97在线视频| 久久91麻豆精品一区| 北条麻妃国产九九精品视频| 91久久久免费一区二区| 久久人91精品久久久久久不卡| 婷婷久久伊人| 四虎影成人精品a片| 懂色av成人一区二区三区| 成人网免费看| 经典三级一区二区三区视频| 天堂av在线7| 欧美亚洲大陆| 成人av综合一区| 亚洲国产精品99久久| 国产aⅴ精品一区二区三区黄| 毛片毛片毛片毛| 日韩视频在线观看一区| 福利网站av| 国产精品亚洲欧美一级在线| 极品少妇xxxx精品少妇| 欧美女孩性生活视频| 91久久国产综合久久91精品网站| 777视频在线| 一级aaaa毛片| 羞羞视频在线观看| 国产一区二区精品久| 国产午夜精品福利| 综合激情国产一区| 免费在线精品视频| 日本少妇高清视频| 毛片女人与拘交视频| 欧美特黄色片| zzijzzij亚洲日本少妇熟睡| 亚洲国产精品va| 亚洲日本欧美在线| 国产一级生活片| 国产小黄视频| 色婷婷综合久久久久久| 亚洲国产电影在线观看| 久久久www成人免费精品张筱雨| 吴梦梦av在线| 五月天综合激情网| 久草网在线视频| 精品一区电影| 五月婷婷久久综合| 国产欧美日韩中文字幕| 成人做爰69片免费| 欧美成人精品福利网站| 色综合视频一区二区三区日韩| 国产在线视频一区二区三区| 一区三区二区视频| 青青草国产精品视频| 国产美女永久免费| 欧美寡妇性猛交xxx免费| 精品一区二区三区影院在线午夜 | 欧美视频13p| 国产欧美欧洲| 伊人久久综合97精品| 日韩精品一区二区三区外面 | 中文字幕免费视频| 天天插天天操| 日韩欧美视频| 91精品国产综合久久福利| 一区二区三区四区欧美| 中文在线观看免费高清| 免费影视亚洲| 99热精品国产| 欧美在线视频一区二区| 日韩 中文字幕| 又黄又免费的网站| 911久久香蕉国产线看观看| 欧美一区二区三区电影| 国产在线无码精品| 无码国产伦一区二区三区视频|